December 22, 2017
A novel approach to studying the viscosity of water has revealed new insights about the behavior of water molecules and may open pathways for liquid-based electronics.
A team of researchers led by the Department of Energy’s Oak Ridge National Laboratory used a high-resolution inelastic X-ray scattering technique to measure the strong bond involving a hydrogen atom sandwiched between two oxygen atoms. This hydrogen bond is a quantum-mechanical phenomenon responsible for various properties of water, including viscosity, which determines a liquid’s resistance to flow or to change shape.
While water is the most abundant substance on Earth, its behavior at a molecular level is not well understood.
“Despite all what we know about water, it is a mysterious, atypical substance that we need to better understand to unlock its vast potential, particularly in information and energy technologies,” said Takeshi Egami, University of Tennessee-ORNL Distinguished Scientist/Professor working through the Shull Wollan Center – a Joint Institute for Neutron Sciences, an ORNL-UT partnership.
The team’s study, published in Science Advances, demonstrated that it is possible to probe real-space, real-time dynamics of water and other liquids. Previous studies have provided snapshots of water’s atomic structure, but little is known about how water molecules move.
Read more at ornl.gov/news.
Related Publication: Iwashita, T. et. al. (2017). Seeing Real-Space Dynamics of Liquid Water Through Inelastic X-ray Scattering. Science Advances, 3(12). doi:10.1126/sciadv.1603079