Products like cosmetics, adhesives, and paints rely on a common key component: gels. Polymer gels, a gel type with unique properties, have piqued the interest of researchers because of their potential uses in medical applications.
Soft materials are indispensable building blocks in a wide variety of advanced materials. While it owes its name to its soft mechanical properties, the microscopic mechanisms controlling its flow and deformation have remained poorly understood to date. The imposed external deformation on a soft material drives its microstructure away from the equilibrium state and leads to complicated viscoelastic responses. A lucid fundamental understanding of the deformation behavior of soft matter at the molecular level is crucial for the prediction and manufacture of new materials.
A novel approach to studying the viscosity of water has revealed new insights about the behavior of water molecules and may open pathways for liquid-based electronics.
The flagship campus of the University of Tennessee System and partner in the Tennessee Transfer Pathway.